Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
International Journal of Biomedical Engineering ; (6): 288-299, 2023.
Article in Chinese | WPRIM | ID: wpr-989353

ABSTRACT

Objective:To improve the users’ comfort of steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) through high-frequency stimulation and overcome the problem of accuracy decline caused by high frequency by combining dual-frequency encoding.Methods:Two dual-frequency high-frequency 60-instruction paradigms based on left and right visual fields and checkerboard stimuli were designed based on the 25.5 - 39.6 Hz frequency. Thirteen subjects participated in the experiment, and spectrum and spatial characteristics analyses were performed on SSVEP signals. The filter bank parameters were optimized based on the spectrum characteristics. Extended canonical correlation analysis (eCCA), ensemble task-related component analysis (eTRCA), and task-discriminant component analysis (TDCA) were used for SSVEP recognition.Results:Stable SSVEP was successfully induced in both the left and right visual fields and the checkerboard grid paradigm. The left and right visual fields had high signal-to-noise ratios for the fundamental frequency and its harmonics and weak signal-to-noise ratios for intermodulation components, whereas the intermodulation components of the 2 stimulus frequencies of the checkerboard grid, f1 + f2, had significantly higher signal-to-noise ratios than the second harmonic components above 30 Hz, and there was also a f2 ? f1 component and a 2 f1 ? f2 component. Combined with brain topography, it can be seen that the f1 and f2 response components of the left and right visual fields are located on opposite sides of the visual field, while the checkerboard grids are both concentrated in the center of the occipital region. Regarding the lateralization of brain topography amplitude and signal-to-noise ratio, the mean values of the PO3 and PO4 signal-to-noise ratios at the stimulation frequency of the left and right visual fields are consistent with the contralateral response characteristics. The 5 fb ? 1 method is the optimal filter set setting method, and the recognition correctness rate of TDCA for the left and right visual fields is the highest. However, the comparison of the recognition correctness rate of tessellated lattice eTRCA and TDCA is not statistically significant ( P > 0.05). The information transmission rates of the three algorithms all increase and then decrease with the increase in data length. Conclusions:The designed dual-frequency, high-frequency SSVEP-BCI paradigm is able to better balance performance and comfort and provides a basis for practical large instruction set BCI design methods.

2.
Journal of Biomedical Engineering ; (6): 434-441, 2023.
Article in Chinese | WPRIM | ID: wpr-981560

ABSTRACT

There are few researches on the modulation effect of transcranial direct current stimulation(tDCS) on complex spatial cognition. Especially, the influence of tDCS on the neural electrophysiological response in spatial cognition is not yet clear. This study selected the classic spatial cognition task paradigm (three-dimensional mental rotation task) as the research object. By comparing the changes in behavior and event-related potentials in different modes of tDCS before, during and after the application of tDCS, this study analyzed the behavioral and neurophysiological effects of tDCS on mental rotation. The comparison between active-tDCS and sham-tDCS showed no statistically significant difference in behavior between different stimulation modes. Still, the changes in the amplitudes of P2 and P3 during the stimulation were statistically significant. Compared with sham-tDCS, the amplitudes of P2 and P3 in active-tDCS mode showed a greater decrease during the stimulation. This study clarifies the influence of tDCS on the event-related potentials of the mental rotation task. It shows that tDCS may improve the brain information processing efficiency during the mental rotation task. Also, this study provides a reference for an in-depth understanding and exploration of the modulation effect of tDCS on complex spatial cognition.


Subject(s)
Transcranial Direct Current Stimulation , Cognition , Evoked Potentials , Brain
SELECTION OF CITATIONS
SEARCH DETAIL